EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-603554

A Block-Based MC-SURE
Algorithm for Denoising Sensor
Data Streams

M. Ndoye, C. Kamath

November 20, 2012



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



A Block-Based MC-SURE Algorithm for Denoising
Sensor Data Streams

Mandoye Ndoye and Chandrika Kamath

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory
Livermore, California 94550

Email: ndoyel, kamat h2@ 1 nl . gov

Abstract

We propose a strategy to automatically denoise sensor data streans@onuith noise that can be approximated as additive
white Gaussian noise. The proposed block-based method is adaptedhizoMonte-Carlo-SURE (MC-SURE) algorithm which
enables the blind optimization of the denoising parameter of a wide class of.fider framework is formulated by identifying
and addressing the challenges that arise when the MC-SURE algorithnpliscajn an on-line data processing setting, where
latency (and the length of data blocks) must be constrained. The stitadsgyeen tested using real datasets. Our results indicate
that the proposed method can be effectively used to handle the denofsiegl sensor streaming data that reasonably fit the
Gaussian model assumption.

I. INTRODUCTION

The increasing affordability of sensors is enabling theisteeffective use in real or near-real time monitoring ofmgbex
phenomena and systems. Some examples are fusion in Tokaaetons [1], electric power grids [2] and large-scale isfra
tructure networks ([4], [3]). The measurements obtainesinfrmultiple sensors monitoring the phenomena or systemsrund
consideration are analyzed to track their operating stateketect deviations from their normal behavior. The efiestess of
these real-time system monitoring algorithms dependsngnather things, on the quality of their input data, thathe tevel of
the signal relative to the level of noise. Since sensor dagdypically subject to non-negligible measurement erfoysn both
instrumental and environmental noise sources, the qualithe measured data must be improved by filtering to removst mo
of the noise contributions while preserving important wiaven information. Although a host of denoising algorithrmseady
exist, most are not inherently designed for real (or neabyréme data processing as they often lack an on-line/aated
mechanism for selecting the best parameter value for dieigoés arbitrary measurement sequence. Some denoisingthigs,
such as Kalman filters [5], are suited to on-line processthgfortunately, their performance depends on how well boih t
underlying processes that generated the observationshanaboise statistics have been modeled. This requiremera-fwiori
full system model description is not practical in the gehstgeaming data setting as it would be difficult to obtain anuaate
model for each of the processes that generated the multgike sireams.

We develop a simple method for on-line denoising of a singleser data stream with arbitrary waveform characteridiics
extending the Monte-Carlo Stein’s Unbiased Risk EstimME&{SURE) algorithm by Ramaret al. [6]. This is an approach
that enables a blind optimization of the regularizatiorapagters of a wide class of denoising algorithms that see&dover an
arbitrary signal corrupted by additive white Gaussian ag@WGN). The proposed method is trivially applicable to dsimy
multiple data streams since the streams from distinct sers@ expected to have different signal and noise charstitsr
and can be processed independently. The MC-SURE formal&iparticularly suited for use in denoising sensor dateastrs
because it produces the optimal denoising parametersg(@simean-squared-error criterion) of a chosen filter withauoy
assumptions about the underlying noise-free signal.

This technical report is organized as follows. In Sectigrtie general concept of the MC-SURE algorithm is describatl a
relevant issues concerning its application to on-lind/ti@ae data processing scenarios are discussed. Sectidedls with the
approaches taken to solve these problems. Experimentdigesid discussions are provided in 1V, followed by a codiig
summary in Section V.

Il. CONCEPTS ANDCHALLENGES
A. Description of the MC-SURE algorithm

The MC-SURE algorithm is a procedure for generating theroatiparameters of an arbitrdrglenoising algorithm used to
estimate a signal corrupted by additive white Gaussianen@gce the optimality criterion is the minimum mean-sgueirror
(MSE), the MC-SURE strategy finds the best denoising pamani®st minimizing Stein’s Unbiased Risk Estimate [7], which
is an unbiased estimate of the MSE that can be computed froasuned data without any knowledge about the underlying

1Any denoising function that is continuous and weakly difatiable. This coincides in practice with a wide class ofaiging algorithms.



noise-free signal or the functional expression of the d&ngifilter. The formal setup is the following: consider tlypital
denoising problem where one has a noisy dataset
y=s+w

comprised ofs € RY, the vector of samples from a sought-after signal, andt R, the vector of the realizations of a
zero-mean AWGN with variance?. The parametric denoising algorithm chosen is the mapping

sx = faly)

producing the signal estimate from the measured datg. The vector-parameter), controls the level of denoising and
corresponds to the parameters of the denoising algorithre. JURE statistic estimating the mean-squared e;%rﬂ)s — 8,7
is expressed in [6] as

0.2
T(y) = lly = 8al1> + “2-divy {2 ()} — n

where div { fA(y)} is the divergence of the mappinf (-) with respect to the datg. The optimal denoising parametat is
the minimizer of the\-dependent SURE cunl (y) : A € RX}, whereK is the number of elements in the vector-parameter
A. The optimal parameter is thus formally given by

N = argmin{T\(y) : A € RE}, @)
A

and the best estimate of the underlying signa given bys* = fy-(y).

Figure 1 illustrates the effectiveness of the MC-SURE meétfus denoising a data segment corrupted with AWGN. Figure
la shows a noisy data segment and the underlying signalastinusing MC-SURE. The example data segment is generated
by adding AWGN to a known signal. The denoiser selected is thes&an filter and the denoising parametes the standard
deviation of the Gaussian filter. The MSE-statisﬁcﬂs — 8,||? is computed for60 uniformly-spaced points on the range of
A values from0 to 15. The MC-SURE method is used to compute the SURE-stafitig) for these same\ values. Figure
1b shows that the SURE curve approximates the MSE-curve lagréfore can be used to find theparameter for use in
denoising the example data segment, as shown in Figure 1a.

The MC-SURE algorithm extends the applicability of SUREd@ denoising by introducing an effective approach for
computing the divergence term giyfx(y)} without the need for a closed-form expression of the demoiBeis black-box
approach only requires multiple responses of the denoifiitey to synthesized inputs: the measured datalus multiple
realizations of a zero-mean i.i.d. random vector with aahljit chosen variance. We chose the MC-SURE algorithm as
the centerpiece of the proposed framework for denoising@edata streams due to two key features. First, it provides a
straightforward method for automatically optimizing tharameters of a denoising filter without any assumption albloait
desired underlying signal. Second, the algorithm workshwéat large set of denoising filters and thus provides flexipilit
when selecting denoising methods. However, the applicaifahe MC-SURE method for on-line data processing has icerta
challenges, which must be solved in order to arrive at a vimgrframework.

B. On-line implementation challenges

On-line data processing techniques are either sampletb@sblock-based [10]. In sample-based processing, the atata
processed one sample at a time and the algorithm combindaftitenation about its current state and the current sanple t
produce an output sample. For example, the recursive leastrss (RLS) filter is an algorithm that does sample-baseal da
processing. In block-based processing, the sequence dfumegaents is buffered into data blocks that are processedabn
a time. Block-based processing distributes fixed comparati overheads across multiple samples. However, thisrsnan
additional latency which would not be present in samplestiggocessing. Short Time Fourier Transform (STFT) contputa
is an example of block-based processing.

In this report, we consider the block-based approach for an#ine data processing framework. The critical need for
minimizing latency dictates that the data blocks shouldehidne minimally required number of observations, a requ@ein
which introduces certain challenges in denoising stregrdata using the MC-SURE algorithm. Our experimental exgilons
have also indicated other issues that are intrinsic to theWRE method, rather than being particular to the on-lirecessing
setting. We next discuss these challenges using the exatapdset shown in Figure 2. This is a periodic dataset so that
successive data blocks have the same frequency/informatiotent, allowing more meaningful comparisons acrosgiptel
data blocks.
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Fig. 1: lllustration of using the MC-SURE algorithm to desmia dataset corrupted by AWGN using a Gaussian filter.
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Fig. 2: Segment of the example dataset used to illustrateesgshallenges. The dataset is synthesized by adding AW@&N (w
standard deviatiom = 0.34) to a sum of sinusoidal functiong(z) = % - cos(20x) + § - cos(10z — 7/4) — % - sin(5z) + § -
sin(30x — 7/4).



1) Detrimental effects of noise estimation errors: The SURE statistic in Equation 1 considers the noise standiariation
o to be exactly known. This is clearly not the case in practedtings where this parameter must be estimated. In [6],8Ram
et al. assumed that the parametecan be reliably obtained using the Donoho median estim&loffhich estimates the noise
standard deviation of a lengtN- datasety as

My
0.6745°
where My, is the median of theV/2 wavelet coefficients at the finest scale. The test datasething6] consisted of images
corrupted with synthesized AWGN. In such cases, the noiserieqtly white/Gaussian and the numb€rof observations is
sufficiently large (typically N> 2562) to assume that the estimate ®fis practically equal to its true value.

However, in the context of real datasets, the observed neiggically not AWGN, although it can be reasonably modeled
as such in some instances. In streaming data processingmitel number of sampled/ from a given data block might be
too small to reliably estimate the associated noise paemenfortunately, uncertainties about the noise paraneia lead
to unreliable estimation of the SURE curves as shown in thiewWiong experiment.

From the example data of Figure 2, we generate two groupstatets. The first is comprised 26 consecutive lengtBs
data segment{byg1 :i=1,...,20} while the second, c20 consecutive lengtB00 datasete{yf) 2 =1,...,20}. Individual
segments from a group have practically the same frequenaienband noise characteristics since the example dataatieey
taken from is periodic. Thus, the MC-SURE algorithm showddailly report the same denoising parameter value for all 20
data segments. For each len@thdata segmerygl), we generate an estimatél) of the noise parameter using the Donoho
median estimator [8]. This estimate is used in Equation lampmute the SURE curve, resulting in the sequence of SURE-
statisticsTA(ygl)) for A ranging from0.0 to 15.0 at 0.25-increment. The parameteris the standard deviation of the Gaussian
filter which is chosen here as our example denoiser. The rdéoke curves in Figure 3 correspond to the SURE curves for
the 20 length25 data segments. We oberve that the computed SURE curvesigaificantly from one another although they
intend to estimate the same MSE-curve. Further, SURE curees two different data blocks can report drastically diéfet
values for the best denoising parameter to select. For eleamgigure 3, the minimizer is equal @25 for one curve but
2.00 for another. In contrast, when we consider the SURE curvebef0 length300 data segment$y§2) ci=1,...,20}

(the solid/red curves in Figure 3), we find better agreemeandtthe minimizers are now all in the vicinity of = 2.0.

Unfortunately, we cannot arbitrarily increase the size afadblocks in on-line data processing settings due to thd fore
low latency. Therefore, to make the MC-SURE approach worksteeaming data, a different strategy is needed to generate
sufficiently reliable SURE curves.
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Fig. 3: SURE curves for two groups of data segments: 20 caisedength-25 data segments and 20 consecutive lendgih-30
data segments

2) Reliable computation of the divergence term:Given a lengthA data segmeng and a specific (vector)-parameter value
A; from a suitably chosen grid of denoising parametgxs: j = 1,2, ..., J}, the reliability of the computed SURE-statistics
Ty, (y) also depends on the accuracy of the divergence tergp{djyv (y)}. It has been shown in [6] that the divergence can
be expressed as

divy {/x, (y)} = lim Ep{b"(fx,(y +b) = /5, (¥))}, (3)

whereb is a zero-mean i.i.d. random vector with covariaré®, and £, {-} denotes expectation with respectio When a
sufficiently small value of is chosen, diy{f\,(y)} is estimated using a Monte-Carlo (MC) approach, which fiesteyates



k realizations{b; }*_, of the length”A' random vectob and then computes theMC-run divergence estimate as

k
vy (12, (%)} = 2 3BT (s, B) — £, (), @

which amounts to averaging thiesingle-MC-run divergence estimates.

To generate a SURE curve for a data segmenthe divergence is estimated for each element of the paeangeid
{\j:i=1,2,...,J}. We conducted the following experiments to understand Hesvriumber of runsk, and the length of
the data segmenty, influence the estimate of the divergence. We first define stienation error as

. — (k) .
B (y) =div, {f,()} - divy {fs,(¥)} 5)
fori =1,2,...,J, where the reference divergence-curvedify,(y)} is the sequence to which theMC-run divergence

estimate converges to in probability. For the example @ataise reference divergence is obtained by using a verg lawnber
(i.e., k = 50000) of MC simulations. A& increases, the variances of estimation errors tend to zero.

Figure 4 illustrates how the error variance changes wittwhen we estimate the divergence curve with a single MC run.
For each parametex;, the associated error variance is estimated using 1000 wiethp/alues Ong\lj)(y). The lowermost

curve of Figure 4, which corresponds to the variance$lﬁf,) (y):j=1,2,...,J} for a data segment of lengtN = 9600,
indicates that the error-variances are relatively smalbss the entire range of; values. The remaining curves correspond
to the error variance fo’V = 4800, 2400, 1200, 600, and 300. We observe thaWadecreases, the error variances increase
rapidly and can become significant. Further, the error vaaincreases as; decreases to zero indicating that the number of
MC runs required to attain a specific approximation error rdapend on the value of;.

Figure 5 shows0 single-MC-run estimates of the divergence curve for theeagken N = 300. The individual estimates
deviate significantly from the reference curve, indicatthgt multiple single-MC-run estimates must be combinedrtapce
a reasonable approximation of the divergence curve.
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Fig. 4: Variance of the error in estimating the divergenceveuor different value of the data siz¥.
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Fig. 5: Comparison of the divergence curve with single-M@-estimate when the data size is relatively laWww= 300 samples.



Therefore, to adapt the MC-SURE algorithm to streaming ,dathere we process blocks of small size, we need to
automatically choose a numbkrof MC runs that can 1) be averaged within the available tinaenfr and 2) lead to a reliable
divergence-curve estimate which can be used to computefizienfly accurate SURE curve and generate an appropriate
denoising parameter.

3) Effects of strong DC components:: Our exploratory experiments suggested that using the M@ @rocedure on
data blocks with a strong DC components failed to return asgadte denoising parameter value. To illustrate this jssue
consider the two datasetsandzp, wherez is a length-300 segment of the example data apds generated by adding the
constant-vectoD to z: zp = D + z, where all elements oD are set equal td = 10. The application of the MC-SURE
algorithm toz produces the SURE curve in Figure 6(a), which reports a fillmameter value pi* = 2. Sincezp andz are
identical except for the presence of a DC term, we expect fitienal parameter values for denoising to be similar. Howeve
when MC-SURE is applied tap, the resulting SURE curve, shown in Figure 6(b), indicatest ho denoising is needed as
A* = 0. The presence of the DC component erroneously decrelasgsatameter value reported by the MC-SURE algorithm.
In fact, we found that if the DC content is very high, the MCF algorithm appears to always report that no denoising
is needed regardless of the amount of noise present. Sinog imieresting real datasets (e.g., wind power generatioe t
series) have been found to contain strong DC componenssisiiie must be addressed in practice. Contrary to the twesdss
mentioned previously, this problem does not result fromina-data processing settings.

0.20f

»

SURE-values
SURE-values

.10}

.

0.05)

10 12 jE) 2 4 10 12 11

G s g %
A-values A-values

@) (b)

Fig. 6: Comparison of the SURE curves generated using theseisz andzp. (a) SURE curve ok and (b) SURE curve of
zp plus DC-component. Although the two SURE curves differ Bigantly, z andzp only differ by a DC-component term.

4) Spatial resolution issues: We previously discussed the issues that arise in compukiaghbise parameter and the
divergence-term diy{ f(y)} in Equation 1. We next evaluate the issue of reliably conmguthe remaining termg: ||y — 8 ||°.
Figure 7 shows the SURE curves for data blocks of differemgifles extracted from the same sum of sinusoidals functios pl
AWGN noise with variancer?. The individual SURE curves are generated using the sanue il and a common reference
divergence-curve. Since Gaussian denoising is a linearatipe, the divergence-curve is the same for all data sempgen
considered [6]. The discrepancies observed between theEStliRves can only be attributed to the terﬁﬂy —8,||%. For
small data blocks{ = 10), the SURE curve reports that no denoising is needéd=(0). As N increases, the SURE curves
are more in agreement and report similar denoising paranvalees. This experiment indicates that even if the noisg¢ an
divergence terms are well approximated, we need a minimalbeu of observations in each data block so that the algorithm
can distinguish the signal from the higher frequency noiséhe data.
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Fig. 7: lllustration of the potential effects of spatial o&gion on the accurate computation of SURE curves.



IIl. A FRAMEWORK FOR STREAMING DATA METHODOLOGY AND IMPLEMENTATIONS

We next describe a framework for denoising streaming daah dkidresses the issue we identified in Section II. Consider
a data streany = {y, : n = 0,1,...} comprised of a desired signal= {s, : n = 0,1,...} plus additive white Gaussian
noise. The data model assumes that the noise standardidevizy vary slowly with time. The streaming measurememnts,
are taken in as successive overlapping data blocks of gty chosen sizes. The methodology for selecting the datk b
sizes will be detailed later. Consecutive blocks are opgda to mitigate possible edge effects which could resolinfthe
filtering of limited-size data blocks. Theth data block is denoted by

yi={yn: N; <n < M}
with N;.1 = M; — L, where L is the length of the fixed overlap between two consecutiva d&icks.

Past observed data blocks Current data block

P

Input stream

Y

( MC-SURE Denoising

Current |
sub-signd IVW‘V\/V\I\/\W\/\/'

Previous signal estimate

/WWMW{\A/WMNM\,M r -MMM/\/'

Merging using weighting windows

Current signal estimate

Output strear
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Fig. 8: Schematic representation of the block-based, ma-llata processing framework centered on the MC-SURE ittigar

Figure 8 shows a schematic representation of the data miogeBamework where the sequence of data blofks: i =
0,1,...} is processed one block at a time. The noise initile data blocky; is removed using the selected denoising filter
() with X set toA}, the best MC-SURE-based parameter value for denoigjin@he processing of theth input data block
y; returns thei-th output data block

8i = far(yi)s
which is the sub-signal of the desired sigsathat is contained iny;. Thus, the processing of the sequence of data blocks
{y::1=0,1,...}, results in a sequence of sub-signals estimésesi =0,1,...}.

We denote bys(ZtD) the estimate of the entire portion of the sigsahat is available after the processing of ther{)-th
data blockyz,. The signal estimatéZ*+1) can be formed by properly stitching together the existirgni in the collection
of overlapping sub-signal estimatég, $1, s, ...,S87+1 as follows:

e 80 =1{5,:n=0,1,2,..., M7} is the previously available signal estimate (i.e., frontcking together the firsT+1

sub-signal estimates).

o §741={8,:n=Mz—L,..., Mz} is the new sub-signal estimate, generated by denoisingZthg){th data block.

« The updated signal estimat€’*1) is constructed by using tapered windows to properly mergenttw sub-signal estimate

§741 to the previous estimatel”?) via

sTHD =M o WD 4871 © Wryy.

This procedure is initialized by setting® = §,. The operator®> denotes element-by-element multiplication. The terms
W@ andW4,, are one-sided tapering windows given by

W(Z)_ 1, 0<n<Mz—L
o ﬁQ(R—(MI—L)), MI—LSTL<MI

W - Bl(n—(MI—L)), MI—LSH<]\/[I
S 1, Mz <n< Mz

where;(n) and 82(n) are respectively the first- and second-half of a ler@jthcosine tapering window, though other types
of tapering windows could be also used. The use of taperimglovis allows us to mitigate edge effects.

The performance of this system depends on how effectivelividual data blocks are denoised. We next describe thes step
we have taken to address the issues that arise when apphenil€-SURE algorithm to short data segments. Additionally,
we describe the methodology for selecting the length of tédeks.



A. Removal of DC components

We have previously shown that the performance of the MC-SW@Rjerithm will degrade if the data block; has a non-
negligible DC-component. To mitigate the issue and obtagoad parameter value for denoising the data, we fijtefwith
a notch-filter centered at the DC-frequency [9]. If the ddtack y, has no DC-component, it will be indifferent to this DC-
blocking filter. We may assume in the following discussiomattthei-th data blocky; is free of a DC-component since, if it
had one, the DC-blocking filter would have removed it at thage.

B. Noise estimation

The reliability of the SURE curve for théth data blocky; depends, among other things, on how accurately the noise
parameter is estimated. Unfortunately, a sole reliance on the limitachber of measurements from is expected to produce
an insufficiently accurate estimate of We mitigate the problem by combining information from nipi data blocks. Since
the data model expects the noise characteristics to chamgky svith time, it is reasonable to assume thdt consecutive data
blocks have additive white Gaussian noise with the samealatdrdeviations. Using the Donoho median estimator, a separate
estimate ofs is computed for each of th&/ data blocks and the estimate for the current data blocly7 is obtained via
weighted averaging

5 SN,
==L T
ZZ.'=IM+1 N,
where{67_nr4+1,67-m+2,...,07} are the noise estimates from the previdusdata blocks,V; denotes the length of the
i-th data block and estimates from longer data blocks hagetareights as they are expected to be more reliable.

C. Computing the divergencecurve
The estimate of the divergence for the current data bipghkusing & MC runs is given by

—~ (k) .
dP =div,, {fr,(y2)}, =1.2,...,J

and computed using Equation 4. The parameteis the j-th element in the chosen grid of denoising parameter vak@sa
fixed 7, {d§.k) :k=1,2,...} forms a convergent sequence of the estimates oftevalue of the divergence-curve, which is
denoted here by;. Since the erro¢d§k) —d,| tends to zero a% increases, thg-th divergence value could then be estimated
by d§K-7) with K; chosen such that

J | d;_z) B d§1)|

<4, (6)

where ¢ is the convergence stopping criterion. However, indivigualentifying the number of MC runs for each of thé
divergence-values could lead to practical difficulties las tonvergence rate qfrgk) : k=1,2,...} is not guaranteed to

be the same for differenf. Thus, instances might occur where, for one or a small nunalbei-indexes, an unreasonably
large number of runs is needed to satisfy Equation 6. To wik@nt this situation, we seek an average/group convergence
requirement, where for all parameter values the divergence-value is estimated dby() with K such that

J
1
rK) = i Z7'§K) < 0. @)
j=1
The k-indexed sequencel®) starts with the value of one, and decreases toward zero adibgence-curve estimal{eig.k) :
j =1,2,...,J} converges with additional MC runs. Figure 9 shows an exarpptdile for the sequence*), where the

choice ofy = 0.02 leads to the termination of the divergence curve ediom after K = 67 MC simulations.

D. Calculating the denoised signal
Once we have obtained the sequer{déK) :j = 1,2,...,J} of estimated divergence values and the estimated noise
parameter valué, we can generate the sequence of SURE-vallles(yz) : j = 1,2,...,J} using Equation 1. The best
parameter for denoising the current data block is given by
Ar = argmin{Ty,(yz):j =1,2,...,J}
Aj
and the associated sub-signal estimate is given by
szt = fr:(yz)



0.8

200 300
Number % of MC runs

Fig. 9: lllustration of the profile of the sequene®), which is used to track the convergence of the divergenceecestimate.

E. Choosing the size of the next data block

To guarantee that spatial aliasing is minimized (i.e., dimtpy components in a data block are easily distinguishatble
size of of each data block (except the first one) is selectedyusformation from previously observed data. At theh data
block, we use principles of scale-space theory [11], [12k&timate the typical size of the dominant signal featurehim t
block. By choosing the size of th&€{1)-th block significantly larger than this feature size, amsure that we have enough
samples to reasonably discriminate the frequency compsmasent in the data. Since data processing latency hasntain
minimal, the size of data blocks must be bounded above. Iitiaddthe sizes should also be bounded below to have sufficie
observations to estimate the noise parameters accuratellie Z-th block, the size of the next data block is thus determined

via
Nzi1 = min { Nmax, max {0 - Az, Nmin}} (8)

where
o Az is the data scale at the current data block that is computdaale-space theory techniques and gives information
on the current expected size of the most relevant featuréiseirdata.
o 0 is a multiplicative factor that gives the data block sizenfrcomputed data scale.
e Nnin is the minimally allowable data block size
o Nmax is the maximally allowable data block size.

IV. RESULTS AND DISCUSSIONS

We next discuss results from an experiment where the prapmamework is tested using a real dataset that is comprised o
sampled measurements of the body acceleration responseebice traveling on a road (see Figure 10). These measutsme
were taken at the sampling rate of 200 data points per sedainde | lists the parameters that are to be set by the user when
implementing the proposed strategy, along with the speeiflues chosen in the denoising of our specific dataset.

1.4

io

Vehicle body acceleration (g)

043 2000 1000 6000 S000
Index

Fig. 10: Example real dataset: vehicle body acceleratioasmements taken at the rate of 200 samples per second.
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TABLE I: Parameter values used in the implementation of treppsed strategy for the example real dataset.

Parameter Numerical Value
Standard deviation of probing noise: 0.0002
Maximally allowable number of MC simulationsN 400
Stopping criterion for the MC-SURE curve convergenge 0.02
Maximally allowable segment siz&¥max 500
Minimally allowable segment siz&Vpn 30
Fixed overlap between consecutive segments: 15
Multiplicative factor: 6 12
Noise estimation parametéd 5

We next introduce approaches for selecting the values afrpaters for a dataset.

« Jointly selecting N and ¢ via calibration: The appropriate number of MC rungy, is system dependent and the
appropriate stopping criteriofi depends on the dataset under considerationNAsicreases, the accuracy of the SURE
curve is guaranteed to increase, though it would take lotwggenerate the result. This is similarly true when the paam
0 decreases. There is an inter-dependence between the cludidé and ¢ - the computation of the SURE curve will
terminate if either the stopping criteriahis reached or allV simulations are done. Hence, they are selected jointly.
Given a class of datasets, the user needs to use a calibpatioass to find the values d&f ando that give sufficiently
repeatable results since it is impossible to a-priori getee appropriate values for these variables for an arlyitdataset.
This calibration can be done by using a sample measuremgmiese taken from historical data. In Figure 11(a), repeated
runs of the denoising procedure on the same dataset leadsatisfactory and non-repeatable results as a portion of the
signal (i.e., around indeX00 to index900) is not properly denoised for some runs. In Figure 11(b) wheér= 400 (i.e.,

N is larger) andd = 0.02 (i.e., ¢ is smaller), we observe that the many runs are reasonabiasiand all are properly
denoised. These choices of parameters would thus used imgiementation.
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Fig. 11: Repeatability of denoising results as a functiorihef choices of the parameteié and . (a) Results whenV
= 100 and$ = 0.5. (b) Results whetV = 400 ando = 0.02.

.
500
Time index

o Selection ofe: The parametet is the standard deviation of the synthesized probe noisd is¢he MC simulations.
We confirmed the observation of Ramaatial. [6] that the MC-SURE denoising procedure is robust to every large
changes in the value ef Figure 12(a) shows a noisy data segment and Figure 12(lwssh® denoised versions with
equal to1.0 and 10~ 2. The results are very similar thoughhas changed by twelve orders of magnitude. Thus, for all
practical purposes, the user could choose any reasonalole #h¢ in the above range. However, sineds involved in
a limit computation, it is preferable in principle for it toebas small as possible. But, selectingpo small could lead
to numerical round-off errors. To guard against these g@kissues, we recommend choosing in genertd be in the
vicinity of 10~°, which is the midpoint of the intervdll.0, 10~*2] in the logarithmic scale.

o Choosing Nmax: The size of the first data block must be preset by the user $irre are no preceding blocks available
to automatically compute the size. We set this size to twiggy, which is the maximally allowable block size for the
dataset under consideration. The valueNgf.x must be derived from a-priori expected data scale inforomatiSince
scale space theory uses the Gaussian kernel, the expergsdasithe most salient features in the data would be in the
range of6 x o4, whereo, is the expected data scale. The parametecan be computed from a large enough sample
of historical data (if available) or given from user expede. To guarantee thaf, is sufficiently large and have good
denoising performance, it has been found that choo8ipgk equal to2 x 6 x o4 (or larger) works well as illustrated via
Figure 13. The expected scadg of the vehicular response data is equal to 15 and thigsc should be set to 180 or
larger. We observe that wheln,ax is less than 180, the denoising performance is unsatisiastthereas good denoising
performance is obtained faW,ax greater than 180.
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Fig. 12: lllustrating the robustness of the MC-SURE alduritto large changes in the value of the noise probe parameter
e. (a) Raw dataset. (b) Denoising results witis equal to10~'2 and1.0.
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Fig. 13: An illustration of the choice of the paramet®,.x on denoising performance of the algorithm.
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o Selecting Nmin and L: The choice of the minimally allowable data block siXg,, could affect the accuracy of the noise
power estimation. So, if any computed data block lengthgs t@anNnin, it is set toNmin. If Nnin is too small, the noise
power in a data block cannot be accurately estimated and wedwteed to consider more data blocks (that is, larger
M) to improve the estimation. There is thus an inter-depeoeldretween the choices df,, and M. Since the expected
data scale is obtained when choosiNg.x, we also setVpyi, to be a function of data scal&min = 2 X 04 = Nmax/6.
The overlap parameter is then chosen equdl to Npin/2. To assess the reliability/robustness of these choicexs) uke
available data, we change the valueshgfi, to assess sensitivity. We observe in Figure 14 that with a&yaate choice
of parameters, the proposed approach for setfiag, leads to good performance results that are not very seadibiv
changes in the selected values.
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Fig. 14: Assessment of the sensitivity of the choiceNgfi, using the available data.

Finally, we present the results for denoising our exampl@askt using a Gaussian filter as the example denoiser. Table |
shows a listing of the computed statistics and parameter@faonsecutive data blocks. The parametgin the table is the
parameter of the Gaussian filter as determined by the MC-SHIB&rithm. Characteristic results of the proposed autemhat
block-by-block data denoising procedure are shown in EdlB using sample data blocks. The results seem to indicate th
good denoising performance is attainable from real dadaséh noise that reasonably approximate the AWGN model, kwhic
is assumed by the MC-SURE approach.

TABLE II: Listing of computed statistics/parameters for 20nsecutive overlapping data segments.

Block || Scale | Length 0; ;i Af
1 12 1000 0.0396 | 0.0396 | 3.75
2 12 244 0.0553 | 0.0427 | 4.25
3 15 244 0.0480 | 0.0435| 7.0
4 19 360 0.0357 | 0.0420| 5.0
5 13 456 0.0398 | 0.0416 | 3.25
6 13 456 0.0464 | 0.0440 | 4.25
7 11 312 0.0405 | 0.0419| 3.25
8 15 312 0.0527 | 0.0429 | 3.25
9 12 360 0.0476 | 0.0451 | 3.75
10 13 360 0.0381 | 0.0451 | 3.25
11 31 312 0.0323 | 0.0423| 3.75
12 13 500 0.0368 | 0.0411| 2.75
13 14 500 0.0322 | 0.0372| 3.0
14 13 336 0.0382 | 0.0355| 3.5
15 13 336 0.0393 | 0.0357| 3.5
16 15 312 0.0381 | 0.0366| 1.0
17 13 360 0.0486 | 0.0388| 0.75
18 11 360 0.0590 | 0.0450| 0.5
19 12 312 0.0554 | 0.0483| 3.75
20 14 288 0.0650 | 0.0533| 0.5
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(b) 7-th data block.
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(c) 8-th data block.
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Fig. 15: Denoising results in some sample data blocks.
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V. SUMMARY

In this report, we extended the MC-SURE algorithm to autécadly denoise streaming data that have been corrupted with
Gaussian or approximately-Gaussian noise. To obtain aipahcolution approach, we first recognized that the MC-&UR
algorithm is well-suited for streaming data as it prescildeblind procedure for optimizing the regularization pagéens of
most of the commonly-used denoising filters. Next, we id@ttithe challenges encountered in the implementation obekbl
based version of the MC-SURE algorithm. We then proposedmadwork that addresses these challenges and described how
we can select various parameters used in our approachlyrina demonstrated that our approach can be used sucdgssful
to denoise a real dataset that fits the data model, where ike moadditive white Gaussian noise.
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